Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
BackgroundReminiscence, a therapy that uses stimulating materials such as old photos and videos to stimulate long-term memory, can improve the emotional well-being and life satisfaction of older adults, including those who are cognitively intact. However, providing personalized reminiscence therapy can be challenging for caregivers and family members. ObjectiveThis study aimed to achieve three objectives: (1) design and develop the GoodTimes app, an interactive multimodal photo album that uses artificial intelligence (AI) to engage users in personalized conversations and storytelling about their pictures, encompassing family, friends, and special moments; (2) examine the app’s functionalities in various scenarios using use-case studies and assess the app’s usability and user experience through the user study; and (3) investigate the app’s potential as a supplementary tool for reminiscence therapy among cognitively intact older adults, aiming to enhance their psychological well-being by facilitating the recollection of past experiences. MethodsWe used state-of-the-art AI technologies, including image recognition, natural language processing, knowledge graph, logic, and machine learning, to develop GoodTimes. First, we constructed a comprehensive knowledge graph that models the information required for effective communication, including photos, people, locations, time, and stories related to the photos. Next, we developed a voice assistant that interacts with users by leveraging the knowledge graph and machine learning techniques. Then, we created various use cases to examine the functions of the system in different scenarios. Finally, to evaluate GoodTimes’ usability, we conducted a study with older adults (N=13; age range 58-84, mean 65.8 years). The study period started from January to March 2023. ResultsThe use-case tests demonstrated the performance of GoodTimes in handling a variety of scenarios, highlighting its versatility and adaptability. For the user study, the feedback from our participants was highly positive, with 92% (12/13) reporting a positive experience conversing with GoodTimes. All participants mentioned that the app invoked pleasant memories and aided in recollecting loved ones, resulting in a sense of happiness for the majority (11/13, 85%). Additionally, a significant majority found GoodTimes to be helpful (11/13, 85%) and user-friendly (12/13, 92%). Most participants (9/13, 69%) expressed a desire to use the app frequently, although some (4/13, 31%) indicated a need for technical support to navigate the system effectively. ConclusionsOur AI-based interactive photo album, GoodTimes, was able to engage users in browsing their photos and conversing about them. Preliminary evidence supports GoodTimes’ usability and benefits cognitively intact older adults. Future work is needed to explore its potential positive effects among older adults with cognitive impairment.more » « less
-
People who are blind share their images and videos with companies that provide visual assistance technologies (VATs) to gain access to information about their surroundings. A challenge is that people who are blind cannot independently validate the content of the images and videos before they share them, and their visual data commonly contains private content. We examine privacy concerns for blind people who share personal visual data with VAT companies that provide descriptions authored by humans or artifcial intelligence (AI) . We frst interviewed 18 people who are blind about their perceptions of privacy when using both types of VATs. Then we asked the participants to rate 21 types of image content according to their level of privacy concern if the information was shared knowingly versus unknowingly with human- or AI-powered VATs. Finally, we analyzed what information VAT companies communicate to users about their collection and processing of users’ personal visual data through their privacy policies. Our fndings have implications for the development of VATs that safeguard blind users’ visual privacy, and our methods may be useful for other camera-based technology companies and their users.more » « less
-
Toeppe, K.; Yan, H.; Chu, S.K.W. (Ed.)Vulnerable populations (e.g., older adults) can be hard to reach online. During a pandemic like COVID-19 when much research data collection must be conducted online only, these populations risk being further underrepresented. This paper explores methodological strategies for rigorous, efficient survey research with a large number of older adults online, focusing on (1) the design of a survey instrument both comprehensible and usable by older adults, (2) rapid collection (within hours) of data from a large number of older adults, and (3) validation of data using attention checks, independent validation of age, and detection of careless responses to ensure data quality. These methodological strategies have important implications for the inclusion of older adults in online research.more » « less
-
null (Ed.)Alzheimer's disease (AD) poses serious challenges for both patients and their family caregivers. In this paper we present the design, development, and evaluation of an ontology model, ADCareOnto, to assist family caregivers providing personalized care for persons living with AD. ADCareOnto includes top-level categories, concepts, and relations about informal care for persons with AD. To enable personalization in care, ADCareOnto also includes a comprehensive user profile modeling that includes various characteristics of both AD patients and caregivers. AD care thus can be tailored based on the user's unique concerns, preferences, and needs. We verified and validated the design of ADCareOnto and evaluated it using a real use case. The results support the quality of its content and techniques.more » « less
-
null (Ed.)Background The world’s aging population is increasing, with an expected increase in the prevalence of Alzheimer disease and related dementias (ADRD). Proper nutrition and good eating behavior show promise for preventing and slowing the progression of ADRD and consequently improving patients with ADRD’s health status and quality of life. Most ADRD care is provided by informal caregivers, so assisting caregivers to manage patients with ADRD’s diet is important. Objective This study aims to design, develop, and test an artificial intelligence–powered voice assistant to help informal caregivers manage the daily diet of patients with ADRD and learn food and nutrition-related knowledge. Methods The voice assistant is being implemented in several steps: construction of a comprehensive knowledge base with ontologies that define ADRD diet care and user profiles, and is extended with external knowledge graphs; management of conversation between users and the voice assistant; personalized ADRD diet services provided through a semantics-based knowledge graph search and reasoning engine; and system evaluation in use cases with additional qualitative evaluations. Results A prototype voice assistant was evaluated in the lab using various use cases. Preliminary qualitative test results demonstrate reasonable rates of dialogue success and recommendation correctness. Conclusions The voice assistant provides a natural, interactive interface for users, and it does not require the user to have a technical background, which may facilitate senior caregivers’ use in their daily care tasks. This study suggests the feasibility of using the intelligent voice assistant to help caregivers manage patients with ADRD’s diet.more » « less
An official website of the United States government
